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Further Remarks Concerning Optimization of Counting Times in 
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Rebuttal to Killean; Considerations of Background Counting and Slewing Times 
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The objections raised by Killean [Acta Cryst. (1969), B25, 977] to the validity and applicability of the 
optimization presented by Hamilton [ACA Summer Meeting (1967), Abstract E6] and Shoemaker 
[Acta Cryst. (1968), A24, 136] are discussed, and shown to be not entirely substantial; it is concluded 
that optimized distribution of a fixed total counting time for the determination among the various 
reflections may still prove useful under commonly encountered experimental conditions. Modifications 
of the equations of Hamilton and of Shoemaker are presented. It is shown that, within the context of 
fixed total counting time, the addition of background to which a portion of that counting time must be 
allocated (in optimized ratios; see Shoemaker, 1968) results in an increase in the optimum counting 
time tj (scan plus background) per reflection to be assigned to relatively weak reflections that are highly 
sensitive to the parameters being determined, and a decrease in optimum counting time for weak reflec- 
tions of low sensitivity and for all strong reflections. When a priori estimates of optimum counting times 
tj (without consideration of slewing between reflections) are available, as from a previous rough deter- 
mination, the question may arise as to whether a low-weight reflection k should be counted at all since 
its omission releases not only its optimum tk, but also the slewing (circle-setting) time ts as well, for 
distribution among the remaining reflections. It is shown for fixed total time (counting plus slewing) 

t, ,o~z/2 the weight of the determination is increased by omitting the operations that iftk<t~' where t~_~.s.k~ , 
of slewing to and counting reflection k. [Here t ° is defined (Shoemaker, 1968) as a counting time that 
would give a variance contribution due to counting statistics equal to the variance contribution due to 
all other sources.] 

Hamilton (1967) has presented an equation giving rela- 
tive counting times tj for the various reflectionsj when, 
under certain conditions, the weight of a single param- 
eter ~ is to be maximized under the constraint of a 
fixed total counting time for the structure determina- 
tion: 

' O IFs l  2 1 
tsoc(Lp) - m  . 1[ - ~ - -  . , , . .  IFjI 3 (1) 

(where the Lp factor is defined in the usual way, rather 
than the reciprocal as given originally by Hamilton). 
Shoemaker (1968)has independently derived more gen- 
eral equations, and has shown that they specialize to 
Hamilton's equation under the conditions specified, 
which include the condition that background counts 
be negligible and the condition that random error con- 
tributions to F 2 from counting statistics be small com- 
pared to those from all other sources (the latter being 
assumed proportional to F 2 itself). Recently Killean 
(1969) has claimed to demonstrate that Hamilton's 
equation is invalid as an optimizing condition, and that 
Shoemaker's equations are likely to be of rather lim- 
ited applicability, particularly in regard to 'X-ray dif- 
fractometry aimed at normal stereochemical work.' 

Killean's remarks concerning equation (1) apparently 
assume incorrectly that the range of applicability 

claimed for that equation includes the limit at which 
relative error contributions from counting statistics are 
not merely small but effectively negligible. His anal- 
ysis, based on his equation (3), contains essentially 
nothing that cannot be found in equations (9), (10), 
(18] and (25) of Shoemaker and the associated discus- 
sion, other than expression of the more or less obvious 
fact that optimization by variation of counting times 
is impossible under conditions in which the weights 
cannot in fact depend on those counting times. Short 
of that limit there is an important range in which equa- 
tion (1) may be regarded as valid at least as a reason- 
able working approximation. 

In amplification, it may be helpful to present Shoe- 
maker's equation (34) in a modified form: 

1 1 - - ~  2 )1/2 j ((  sl J ) j . , o  " 
(2) 

The notation (Shoemaker, 1968) will be only partially 
reviewed here. The total time allowed for counting is T. 
The 'point of diminishing retunas' is given by 

T°= ~ t~ (3) 
] 

where 
t~-a#K~ (4) 
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is the counting time for reflection j that would be 
necessary to make the variance in the intensity for that 
reflection due to counting statistics equal to the vari- 
ance due to all other sources of random error. The 
subscripts j and t o on the mean in equation (2) indicate 
that it is a weighted mean taken over all j with weights 

2 is the contribution to the proportional to the t~. Kj 
variance in AF=Fo-Fc due to sources other than 
counting statistics [Shoemaker, 1968, equations (10) 
and (20)]. When background count is negligible (a case 
denoted by a zero subscript), then 

2j=20j 
where 

2oj oc(Lp)-L (5) 

If we further assume that 

x~oclF: l  2 (6) 

and if we write for the one parameter ~, that is being 
optimized in Hamilton's treatment 

t-2yz c.:2 31F./I 1 131F:l 2 
=-o,d = - ~ 9 ~ -  - 2IFjI I 3~, (7) 

then equation (2) reduces to 

( t j+t~)0=const .  (Lp) - m  31FjI 2 I 1 
• --3~-~-- !" IFj[ 3 (8)  

which differs from Hamilton's equation [equation (1)] 
only in the presence of the added term t~ on the left 
side, and the zero subscript which explicitly indicates 
the absence of background• Hamilton's equation may 
be regarded as a suitable working approximation if the 
t~ are generally small in comparison to the tj. The 
smaller the t~ are relative to the t j, however, the smaller 
effect a given variation of the tj will have on the weight 
c~t of ~,  and in the limit where t~___ 0 there will be no 
significant effect and therefore no optimization, in 
agreement with Killean's conclusions• To show this ex- 
plicitly, we first rearrange Shoemaker's equation (18) 
and combine it with our equation (4) to give for the 
weight wj of reflection j 

I { t,t~ ~ 1 ( 1  10)-1 (9) 
wj= ~ f  \ t j+  t~ ] = -2j ~ + )~- " 

Differentiation gives 

With 

dwj 1 
dtj 2j 

(1 + t j / t ~ )  - 2  . (10) 

36o l 

g2~, j -  3wj 

[Shoemaker, equation (25)], we obtain 

3o9, _ f 2 , , j  (1 + t i t S )  -2 (11 )  
3tj 2j 

which for finite tj vanishes as t~ --+ 0. The optimization 
condition [Shoemaker, equation (32)] may be written 
in the present instance in the form 

3co l 
3tj ~2 = 0 (12) 

which for vanishing t~ leads to a zero value for the 
Lagrangian parameter ~2, and no optimization. At the 
other extreme, where the non-counting random errors 
xj tend to vanish and the t~ become indefinitely large, 
equation (12) gives 

f21j ~2~0 (13) 
2j 

as a condition of optimization, and since that condi- 
tion is in general impossible of fulfillment for all j 
there is again no optimization, as already pointed out 
(Shoemaker, p. 141). Between these limits, equations 
(11) and (12) lead to the equations already given by 
Shoemaker, and to equation (2). 

Equations (1) and (8) assume negligible background 
count; if the background count is not negligible, the 
counting times should be optimally divided between 
reflection and background [Shoemaker, equations 
(4-6)]. If this condition is fulfilled, the effect of adding 
a background scan rate R8 to a reflection that would 
have a scan rate R0 without background, to give a new 
scan rate Rs = Ro + RB, is to increase 2j from the value 
20j that obtains in the absence of background by the 
factor 

2s - [ (1  +fl)1/2..]_~11212 > 1 (14) 
20j 

where fl= Rn/Ro; when fl is large 2j/2oj-+ 4ft. Let us 
represent by ,~ and ~ the appropriate kinds of means 
of 2 and £2 over all reflections, and use a zero subscript 
to indicate the case where background is absent. Ne- 
glecting unity in comparison to TIT ° (since T ~  T o is 
the usual case), we may rewrite equation (2) as 

=_~o T 112 ---~] (15) ', ) • 

For a strong reflection, addition of background to all 
reflections has the effect that ~ increases more than 2j, 
while of course ~0 does not change at all, and the equa- 
tion predicts that the tj will invariably decrease. For a 
weak reflection, addition of background increases 2j 
more than )~, and tj may increase or decrease depend- 
ing on the relationship between the two terms. If  a 
weak reflection is already one with a relatively small 
optimum counting time, the optimum time may go to 
zero and the reflection excluded; the sensitivity of the 
parameter to the reflection is low enough that the added 
time for counting background is not worth while. If a 
weak reflection is already one with a large optimum 
counting time, being a reflection that is very sensitive 
to the parameters, an increase in tj (to include back- 
ground counting time and also perhaps to counteract 
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partially the resulting decrease in precision) may be 
indicated. 

Killean's critique of Shoemaker's (1968) equations 
seems to be based on the assumption that for normal 
stereochemical X-ray work counting statistics are not 
usually a significant source of random error, relative 
to other sources. It is interesting to note in this con- 
nection that many authors of structure papers still find 
it necessary in refinement to employ weights based to 
an important degree on counting statistics, particularly 
when diffractometer data extend to high scattering 
angles where there are many weak reflections. It is also 
important to note in this connection that the weak 
reflections are usually the ones most favorable to op- 
timization, and these are moreover the ones for which 
background counts are more likely to be relatively im- 
portant. Killean's assumed typical conditions - ulti- 
mate G or R index 0.04 or 0.05 without including 
counting-statistical error - may be realistic in many 
cases, but if accepting them, under conditions of neg- 
ligible background count, we would argue that count- 
ing-statistical error should not become really unim- 
portant as a contrib~ator to uncertainty until the count 
is at least several times his figure of 150. In the event 
of high background, this limit should be dispropor- 
tionately higher. 

Killean's remark that ' . . .  there is something suspect 
in limiting the counts in order to minimize the vari- 
ances of the parameters' seems to miss the point of 
Hamilton's and Shoemaker's treatments that counts of 
some reflections are limited to small values so that 
counts of others, more sensitively related to the param- 
eters to be refined, may have larger values so as to 
maximize the weight of the determination. His further 
remark 'It would be better to eliminate the a2{IFojI} 
term by increasing the counts, particularly as with Ij = 
150 most of the time on the X-ray diffractometer would 
be spent setting the circles rather than measuring reflec- 
tions' again seems to miss the point of optimization; 
the total counting time T is by hypothesis fixed, and 
cannot be increased across the board. However, since 
Killean has raised the matter of slewing time (setting 
circles), let us pursue this subject further. 

I f -  as in the usual case in a structure determination - 
there is no way of knowing, before making even the 
first pass on a reflection, whether it should be counted 
or not, then the total slewing time for all reflections 
T~ = nts (n = number of reflections, t~ = slewing time per 
reflection) is fixed and already committed, and neither 
affects nor is affected by what is done with the actual 
counting time T = / ' t o t -  Ts. If on the other hand, within 
the context of a fixed total time Ttot, estimates of op- 
timized wj (and t j) are available ahead of time, perhaps 
from a previous rough determination, it may be that 
certain low-weight reflections (k) should not be counted 
because, through neglecting them, not only their count- 
hag times tk but also their slewing (circle-setting) times 
t~ become available to be distributed among the re- 
maining reflections to increase the overall weight f2 of 

the determination. For a given reflection k there is 
presumably a limiting value for the previously op- 
timized tk [as given, for example, by equation (2)] - 
call it t~, - such that, if tk< t~, it is not worthwhile 
slewing to that reflection and counting it. Precise esti- 
mation of t~ would be difficult, but by the approach 
summarized in an Appendix to this paper it can be sur- 
mized that t~ is very roughly the geometric mean of 
t o and ts: 

t~ ~_(t°ts)t/2. (16) 

If the condition tk < t~, as based on a priori estimates 
of tk is met by only one or a very few reflections, the 
decision whether or not to slew to each such reflection 
or count it at all may be based on these a priori esti- 
mates and use of equation (16). If, however, the con- 
dition is met by a large number of reflections, perhaps 
a 'renormalization' should be involved similar to that 
already discussed by Shoemaker for the case wj < 0, 
since dropping some reflections will change the aver- 
ages that are involved in the computation of the re- 
maining tk and in the derivation of equation (16). The 
problem of renormalization is beyond the scope of this 
paper, but with the advent of modern automatic dif- 
fractometers that slew rapidly on all circles simulta- 
neously (e.g. Syntex P1-) the problem may be academic. 

It remains for the present authors to acknowledge: 
(1) that the actual degree of optimization of parameter 
weight possible through the use of our equations under 
various conditions has not yet been estimated theoret- 
ically or determined experimentally; and (2) that the 
effect of systematic errors is largely unexplored and 
potentially damaging to the valid and effective appli- 
cation of these equations. In conclusion, we feel that 
the ultimate test of these equations will be only through 
actual experimentation with them. 

APPENDIX 
[Derivation of equation (16) 

For a given value of tk, we will assess the change AI2 
in the total weight I2=~Wieoi of the determination 

[Shoemaker, 1968, equation (14)] resulting from (I) de- 
leting the counting of reflection k altogether, followed 
by (II) adding tk+ts to the total time available for 
counting the remaining reflections under optimized con- 
ditions. We define a limiting time t~, such that if t~= 
t~, then AI2 = Af2~ + A£2 n = 0; if on the other hand 
tk < t~, then AI2 > 0, and both slewing and counting 
of reflection k should be eliminated. For the first step 

dr2 
At2i= ~ Aw~= -t2kw~ 

since w~ decreases to zero. [The definition of I2~ is 
given by Shoemaker, equation (31).] Combination of 
this equation with equation (9) gives 

1 I2k/2~ f2~/2k (17) 
- ! -  + t o -- Af2x AI2n t~ 
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In the second step we increase the total time available 
for  counting the remaining reflections by tk + t~. If op- 
timization is maintained, the changes in counting times 
for reflections j are, from equation (2), 

At j=t~  [ .tk+ts (g'2J/2J)l/2 
To ((~Qj/2j)*/z)),t °] (18) 

where the primes here and elsewhere indicate omission 
of the te rmj  = k from sums and averages. The increased 
reflection weights are, from equation (10), 

A t j  (19) 
A w j -  2j( l+tff t~) 2 " 

The increase in the weight of the determination in this 
step is 

Af2n = ~,' f2jAwj 
J 

where 
=(tk + t,)Qk (20) 

t I t ° )  2 V  o ((12j/2j)a/2/(1 + j / J  /J,, 
0 k -  . (21) 

(We drop the primes and the subscript k henceforth 
because Q should be very nearly independent of the 
one term omitted in the averaging.) Thus t~ is defined 
by 

1 1 ok/& (22) 
t---~k + -t-~ -- (t'~ + ts)Q " 

To get this into a useful form we must resort to approxi- 
mations. We start by rewriting equation (21) as 

Q~C[((I2J2j)*/z)j,,olZ/(1 + T/T°) 2 (23) 

where (at least for a given T/To) C is a constant pre- 
sumably of order of magnitude unity. Equation (2) 
can be written in the form 

(f2ffAj) 1/2 1 + tJt~ 
- -  = - -  ( 2 4 )  

((oj/~9"2)j.,0 1+ r / r  ° 

Thus, with tk = t* 

Ok/Ak ~ C _  1 (1 +t*/ t°)  2 
Q 

and equation (22) becomes 

1 1 
-t~ + t~ - -C-1  (1 +t~/t°)2/(tk+ts) 

o r  

(25) 

t~ q- ts~- C -  lt*(1 + t~/t°) . 

For the case ts = 0 this equation becomes 
* 0 C ~ _ 1 + t k / tk .  

For this case we must adjust C so that t~ vanishes, 
since the tj have been optimized without any considera- 
tion of slewing. Hence C= 1 and we obtain 

t~ ~(t°ts) 1/2. (16) 

Note that no assumption has been made regarding the 
magnitude of T relative to T °. 

To understand the operation of this equation, con- 
sider a not far from marginal reflection k for which 
tk> t~, meaning that we should slew to the reflection 
and count it. Suppose now that something happens 
that increases Kk and thus decreases the attainable pre- 
cision of the reflection intensity (e.g. a noisy electronic 
circuit). This results in a decrease in t °, and therefore 
by equation (16) also a decrease in t~,, which momen- 
tarily runs against intuition. However t~, decreases 
only as  ( t ° )  1/2 while tk itself decreases with the first 
power, by equation (2); thus, while both are decreasing, 
tk may overtake t~, and the condition tk < t~' may result, 
so that the reflection should be omitted. 
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